Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Native oxides form on the surface of many metals. Here, using gallium‐based liquid metal alloys, Johnson‐Kendall‐Roberts (JKR) measurements are employed to show that native oxide dramatically lower the tension of the metal interface from 724 to 10 mN m−1. Like conventional surfactants, the oxide has asymmetry between the composition of its internal and external interfaces. Yet, in comparison to conventional surfactants, oxides are an order of magnitude more effective at lowering tension and do not need to be added externally to the liquid (i.e., oxides form naturally on metals). This surfactant‐like asymmetry explains the adhesion of oxide‐coated metals to surfaces. The resulting low interfacial energy between the metal and the interior of the oxide helps stabilize non‐spherical liquid metal structures. In addition, at small enough macroscopic contact angles, the finite tension of the liquid within the oxide can drive fluid instabilities that are useful for separating the oxide from the metal to form oxide‐encased bubbles or deposit thin oxide films (1–5 nm) on surfaces. Since oxides form on many metals, this work can have implications for a wide range of metals and metal oxides in addition to explaining the physical behavior of liquid metal.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Haptic interfaces can be used to add sensations of touch to virtual and augmented reality experiences. Soft, flexible devices that deliver spatiotemporal patterns of touch across the body, potentially with full-body coverage, are of particular interest for a range of applications in medicine, sports and gaming. Here we report a wireless haptic interface of this type, with the ability to display vibro-tactile patterns across large areas of the skin in single units or through a wirelessly coordinated collection of them. The lightweight and flexible designs of these systems incorporate arrays of vibro-haptic actuators at a density of 0.73 actuators per square centimetre, which exceeds the two-point discrimination threshold for mechanical sensation on the skin across nearly all the regions of the body except the hands and face. A range of vibrant sensations and information content can be passed to mechanoreceptors in the skin via time-dependent patterns and amplitudes of actuation controlled through the pressure-sensitive touchscreens of smart devices, in real-time with negligible latency. We show that this technology can be used to convey navigation instructions, to translate musical tracks into tactile patterns and to support sensory replacement feedback for the control of robotic prosthetics.more » « less
- 
            null (Ed.)Abstract Capabilities for continuous monitoring of pressures and temperatures at critical skin interfaces can help to guide care strategies that minimize the potential for pressure injuries in hospitalized patients or in individuals confined to the bed. This paper introduces a soft, skin-mountable class of sensor system for this purpose. The design includes a pressure-responsive element based on membrane deflection and a battery-free, wireless mode of operation capable of multi-site measurements at strategic locations across the body. Such devices yield continuous, simultaneous readings of pressure and temperature in a sequential readout scheme from a pair of primary antennas mounted under the bedding and connected to a wireless reader and a multiplexer located at the bedside. Experimental evaluation of the sensor and the complete system includes benchtop measurements and numerical simulations of the key features. Clinical trials involving two hemiplegic patients and a tetraplegic patient demonstrate the feasibility, functionality and long-term stability of this technology in operating hospital settings.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
